Exercise Can Change Your DNA

We all know that exercise can make us fitter and reduce our risk for illnesses such as diabetes and heart disease. But just how, from start to finish, a run or a bike ride might translate into a healthier life has remained baffling.

Now new research reports that the answer may lie, in part, in our DNA. Exercise, a new study finds, changes the shape and functioning of our genes, an important stop on the way to improved health and fitness.

The human genome is astonishingly complex and dynamic, with genes constantly turning on or off, depending on what biochemical signals they receive from the body. When genes are turned on, they express proteins that prompt physiological responses elsewhere in the body.

Scientists know that certain genes become active or quieter as a result of exercise. But they hadn’t understood how those genes know how to respond to exercise.

Enter epigenetics, a process by which the operation of genes is changed, but not the DNA itself. Epigenetic changes occur on the outside of the gene, mainly through a process called methylation. In methylation, clusters of atoms, called methyl groups, attach to the outside of a gene like microscopic mollusks and make the gene more or less able to receive and respond to biochemical signals from the body.

Scientists know that methylation patterns change in response to lifestyle. Eating certain diets or being exposed to pollutants, for instance, can change methylation patterns on some of the genes in our DNA and affect what proteins those genes express. Depending on which genes are involved, it may also affect our health and risk for disease.

Far less has been known about exercise and methylation. A few small studies have found that a single bout of exercise leads to immediate changes in the methylation patterns of certain genes in muscle cells. But whether longer-term, regular physical training affects methylation, or how it does, has been unclear.

To read more, click here.

Jeffrey R. Ungvary President

Jeffrey R. Ungvary